
Opportunities and Challenges of
Modeling User Behavior in
Complex Real World Tasks
WOLFGANG SCHOPPEK & DEBORAH A. BOEHM-DAVIS

University of Bayreuth, Germany
George Mason University, Fairfax, VA

Keywords: cognitive modeling, human-machine interaction, automation, task analy-
sis, human error

1. Introduction

In basic research, cognitive modeling has proven a valuable methodology for devel-
oping theoretical assumptions, testing their dynamic interactions, and exploring the
scope of theories. Cognitive architectures such as ACT-R (Anderson & Lebiere,
1998) or Soar (Rosenbloom, Laird, & Newell, 1992) provide a common basis for
different models and enhance communication and exchange of solutions. In applied
contexts, modeling of real tasks and operators could further the understanding of
human-machine systems; validated models could provide an objective guide to de-
sign and training decisions. However, they only provide a first step towards rapid
development of valid real world models, because the architectures do not constrain
many decisions the modeler has to make. This paper will illustrate this issue through
a case study of developing and validating a model of complex real-world behavior �
that of flying an aircraft.

1.1 Requirements for modeling complex real world tasks
Models of real world tasks have requirements that are not always applicable to mod-
els used solely for research purposes. Specifically, to be useful, models first must be
developed in reasonable amounts of time. Although what is regarded as reasonable
will depend on the specific task and the questions the model should answer, the typi-
cal development time of one man year is too long for most applied cases. Second,
models must be valid. Depending on the application or area of interest, there are dif-
ferent kinds of validity for models: structural, predictive, etc.. We claim that first of
all, models must make correct predictions about some aspects of performance, ide-
ally without the need for empirical testing. Considering how rare it is for models to

MMI-Interaktiv, Nr. 7, Juni �04, ISSN 1439-7854, Schoppek & Boehm-Davis 47

make accurate predictions even for basic research, this requirement may be even
more ambitious than the first.

In this paper, we argue that, in general, cognitive architectures can help shorten de-
velopment time as they come with a built-in structure for representing tasks that can
help form the foundation for the model-building activity. We further argue that cog-
nitive architectures can also help address the second requirement � that of ensuring
validity. Most cognitive architectures are based on assumptions that have been de-
veloped and tested empirically. For example, within the ACT-R cognitive architec-
ture, early theories of skill acquisition were compared against empirical data (Ander-
son, 1982). More recently, models of skill acquisition have been applied to and vali-
dated in a broader range of applications (Taatgen, 1999; Lee & Anderson, 2001;
Taatgen & Lee, 2003). As a consequence, standard techniques for modeling learning
of procedures from written instructions are now available.

The problem with architectures, however, is that they are content independent and do
not sufficiently constrain the modeling of specific tasks. Table 1 illustrates this for
the example of decision making. Assuming that decisions can be described by some
form of mapping from actions to conditions, and that conditions, actions, and the
decision rule itself are mentally represented, there are a number of possibilities for
these representations, which may occur in many different combinations. All the pos-
sibilities shown in Table 1 can be implemented in an architecture like ACT-R, but
the architecture does not suggest what combinations a researcher should select for
modeling a given task.

To leverage cognitive architectures for modeling real world tasks, standard solutions
that are architecturally grounded are needed to represent entities such as �decision
making�, �acquisition of cognitive skills�, or �intention management�. Theoretical
standard solutions would be formulated in the language of a specific architecture and
empirically tested (not ad hoc) in a range of applications, thus having the status of
theories.

Table 1: Framework for a symbolic theory of decision making that would support modeling
of complex real world tasks. The sinuous lines indicate that various combinations between
representations of conditions, decision rules, and actions are possible. Solutions used in
ACT-Fly are printed in italics.

Condition Decision rule Action
Class of situations
 - classification by similarity
 - classification by rules

Similarity matching Method
 - represented procedurally
 - represented declaratively

Specific parameters of a
situation

Fixed symbolic rule

Combination of the former two
(�situation plus exception�)

Deduction of rule from
general knowledge

Single step

Such theories can best be developed through tight cooperation between applied and
basic researchers. Modeling in basic research often aims at developing architecturally
grounded theories of certain processes, but it needs to be informed by the uses to
which it will be put in order to be useful to applied researchers. Basic models often
ignore how the processes they represent are influenced by real-world context. Thus,

MMI-Interaktiv, Nr. 7, Juni �04, ISSN 1439-7854, Schoppek & Boehm-Davis 48

from the view of the basic researcher, models of complex real world tasks are benefi-
cial because the applied model is a good test bed for the value of the theory. Also, if
the modeler of a real-world task carefully specifies what parts of the model are de-
rived from the architecture and for what parts new solutions had to be developed, the
basic researcher is informed about ways in which the architecture needs to be ex-
tended.

Thus, we are arguing here that the efficiency of modeling behavior in real world
tasks can be improved when models are developed within established architectures
even though not all solutions to specific modeling problems can be derived from the
architecture. For our project, we chose ACT-R as our architecture, because it is a
widely accepted psychological theory with a broad empirical basis and a modeling
language. On its symbolic level, ACT-R distinguishes between declarative memory,
made up of a network of typed �chunks�, and procedural memory, consisting of pro-
duction rules. ACT-R also assumes a subsymbolic level ascribing continuous pa-
rameters such as activation or utility to each symbol. In memory retrievals, for ex-
ample, both levels determine what is retrieved. On the symbolic level, the memory
element must match the symbolic specification of the retrieval command; given one
or more chunks are matching the specification, the subsymbolic level selects the
most active of these chunks and determines the retrieval latency.

We used the ACT-R architecture to develop a model, called �ACT-Fly�, that simu-
lates the interaction between airline pilots and the flight management system when
completing a descent. The goals for the modeling project were to (1) gain an idea of
how long it might take to produce a model of this complex real-world task using a
cognitive architecture and (2) determine how well this model could predict human
performance. In developing the model, we started with GOMS task analyses and then
implemented them in ACT-R 4.0. Some problems posed by the task could neither be
solved with GOMS nor with standard ACT-R; thus we added minor extensions and
modifications to ACT-R, which are described below.

1.2 Characteristics of our modeled task
Until recently, typical tasks modeled with ACT-R were laboratory experiments such
as memorizing lists of words (Anderson, Bothell, Lebiere, & Matessa, 1998) or dis-
criminating previously learned statements from distracters (Anderson & Reder,
1999); tasks characterized by clear, shallow goal hierarchies, a repetition of very
short trials with the same underlying structure, a static environment, and low de-
mands for prior knowledge. Flying, in contrast, involves heterogeneous goals that
may compete for limited resources. For example, the goal of monitoring the plane
passing a critical waypoint (location in space) competes with the goal of encoding a
new clearance from air traffic control (ATC). Also, much prior knowledge must be
brought to the flying task.

The specific task we chose to model is flying a simulated Boeing 747-400 from the
end of the cruise phase to the initial approach fix using the aircraft�s automated flight
management system. A number of different specific scenarios were flown to include
a variety of conditions, such as different ATC clearances or descent profiles. The
task was a vertical navigation task, chosen because this is one of most error-prone
aspects of automated flying (see, for example, Sarter & Woods, 1992).

MMI-Interaktiv, Nr. 7, Juni �04, ISSN 1439-7854, Schoppek & Boehm-Davis 49

Two basic modes of automation are available for accomplishing the task: a fully
automated mode - called VNAV - where the autopilot receives most of the reference
values from a preprogrammed flight plan; and semiautomatic modes (referred to as
FLCH and V/S), where the reference values must be provided by the pilot. VNAV is
generally the preferred mode of operation because it optimizes the flight profile and
fuel consumption. However, if ATC requires quick changes to the flight plan, the
pilot can respond more flexibly using semiautomatic modes. In all of these modes,
the behavior of automation and aircraft must be monitored and set points must be
provided on time.

Even though the range of tasks modeled within the ACT-R framework has increased
considerably in the past several years, this task presented a number of challenges. For
example, although the challenge of modeling dynamic tasks has been addressed in
the past few years, resulting in models of air traffic control (Lee & Anderson, 2001)
and driving tasks (Salvucci, 2001), the dynamics involved in the present task are dif-
ferent (relatively slow). Users typically have to wait for minutes until they can judge
the success of a certain intervention. Because new and rather unpredictable demands
can arise during the waiting time, multiple interleaved streams of behavior are the
result. Thus, some of the features of the present task required us to find new solutions
that are not obvious in the architecture and cannot be derived from existing models
that successfully predict behavior in other tasks.

The flying task is also difficult to validate as it is a typical supervisory control task,
where the user must mainly observe what the automation is doing, resulting in very
sparse records of observable behavior. This makes the comparison between simu-
lated and real behavior difficult.

2. ACT-Fly model

In developing our model, we drew theoretical background from a combination of
GOMS (Card, Moran & Newell, 1983) and ACT-R. We conducted task analyses
based on flight manuals, interviews with subject matter experts, and interactions with
the flight simulator. These analyses produced a set of methods by which pilots use
the flight management system to fly a descent which we represented using GOMS
elements in an NGOMSL (Kieras, 1997) framework. We then had to develop ACT-R
representations of those GOMS elements and NGOMSL methods and a way of trans-
lating those analyses to ACT-R code. The translation from the NGOMSL code to
ACT-R code was accomplished through an Excel spreadsheet tool. This idea is simi-
lar to Salvucci & Lee�s (2003) �ACT-Simple�, which allows the translation of a sim-
ple modeling syntax into ACT-R. Compared to ACT-Simple with its focus on key-
stroke level processing, our solution is targeted at modeling decision making through
a representation of higher level procedures.

With early versions of the model, we found that when we relied entirely on methods,
the model was too rigid to respond to unexpected events. Specifically, we found that
the sequential structure of methods often did not match the less predictable order of
events in the environment. Another problem with the method-only controlled version
was the lack of situation awareness. The scope of a method is typically limited to
local aspects of a task, and so there was no inherent need to create a �big picture�. To
achieve more flexibility and better situation awareness, we introduced an additional
level to the control structure that operates in a non-sequential, rule based manner. In

MMI-Interaktiv, Nr. 7, Juni �04, ISSN 1439-7854, Schoppek & Boehm-Davis 50

the terms of Table 1, situations at this level are classified by rules, decisions are also
made by a fixed symbolic rule, and the actions taken are either single steps or the
execution of a method.

Level 1

Level 2

Level 3Goal stack

end

Operators

Steps

Method

production x

method
desire

resultsit2

sit1

op

result

current_step

Figure 1: Declarative structures of ACT-Fly. The structure at the top represents a method.
The structure at the bottom shows the goal stack. Level 1 and Level 2 are holding one goal
chunk each. The goal chunk on Level 2 has its slots filled with chunks representing the situa-
tion (e.g. the current method) and current setpoints ("desire"). Results are passed across the
levels.

The model communicates via a TCP/IP socket connection with a PS1 747-400 desk-
top flight simulator manufactured by Aerowinx. The model writes its commands and
requests to a socket and reads answers from it. Likewise, the connection software
reads commands and requests from the socket, forwards the commands to the simula-
tor, gets the requested values from the simulator, and writes them to the socket.

Technically, the model is divided into three parts. A domain independent part con-
tains generic operators and functions that handle the execution of hierarchical meth-
ods and the management of intentions. A domain specific part contains domain
knowledge such as methods and rules. The third part contains the interface to the
external environment. The benefits of this separation are that the general part can be
used for modeling other tasks (done e.g. by Holt, Hansberger, Chong, & Boehm-
Davis, 2002, and Schoppek, 2002), and that, to a certain extent, the general part can
be improved without changing the domain specific parts.

The activities demanded from the pilots range from situation-specific decision mak-
ing (e.g. deciding which mode to use for a specific leg1) to the execution of standard

1 leg: the flight path between two waypoints

MMI-Interaktiv, Nr. 7, Juni �04, ISSN 1439-7854, Schoppek & Boehm-Davis 51

procedures (e.g. entering an altitude restriction into the flight management com-
puter). To account for this variety of actions, ACT-Fly's control structure was based
on a goal stack limited to three levels with a clear division of responsibilities among
the levels. Each of the levels is represented by a goal chunk of a specific type (chunk
is the ACT-R term for a declarative memory element).

Level 1 is the bottom level. It can be characterized as the decision making level. At
this level, rule-based decisions are made as to what goals are pursued and what
methods are selected to accomplish these goals. Level 1 also serves as the goal man-
ager for Level 2. Finally, Level 1 contains some basic problem solving productions.
The goal chunk representing this level stores molar information about the situation,
such as the phase of flight, the position of the aircraft in the flight plan, or the status
of ATC clearances.

Level 2 can be characterized as the method level. It is the level of operation described
by frameworks like GOMS. Similar to GOMS, our methods consist of operators,
subgoals, and decision steps. Level 2 can execute hierarchical methods of virtually
any depth on one level. This is possible because subgoals are not stacked on top of
each other. Rather, superordinate goals are released to memory and retrieved later on.
Storage and retrieval of goals are handled on Level 1. This design has several advan-
tages. First, the concept of a goal stack has been criticized for providing unrealisti-
cally perfect memory for goals (Altmann & Trafton, 2002). In ACT-Fly, goals do not
simply appear on top of the goal stack once the previous goal has been popped, but
must be retrieved from memory - a process that can fail and can predict certain types
of errors. Second, as control is returned to Level 1 after the execution of each sub-
method, the course of action can be corrected during the execution of a long, nested
method. With a more traditional goal stack, the system would be �blocked� for the
time such a method is executed. Although Altmann & Trafton (2002) also argue that
suspended goals are subject to decay, their model does not explicitly allow a mecha-
nism for interrupting the execution of a current task to perform an alternate task.
Thus, our solution makes the model more flexible and ready to handle interruptions.

Most steps within methods are represented as declarative chunks linked through as-
sociations. Thus, the retrieval of the next step is cued by the current method and the
previous step, but is not constrained symbolically. That enables the model to produce
errors of omission and of commission in the execution of methods. Another advan-
tage of the associative linking of steps is that methods are learned �by doing�, using
ACT-R�s associative learning mechanism. This representation of procedures is not
standard in ACT-R modeling, but there is some evidence supporting this assumption.
For example, Byrne and Bovair (1997) explained their findings on the �post-
completion error� with a spread of activation from one step to the next; successful
models of associative sequence learning also exist (Altmann, 2000; Lebiere & Wal-
lach, 2001). Using the execution of one step to cue execution of the next step through
associations between the two steps corresponds best to an intermediate state of profi-
ciency as it is expressed by Rasmussen�s (1986) rule-based behavior. However, that
is not the only mechanism available for representing procedures in our model; it was
also possible to integrate completely proceduralized sections into a method to be
executed as a whole. The ACT-Fly methods serve different functions. There are
methods that perform input operations to the automation, methods that do mental
calculations with flight parameters to support decisions, and methods that return
classifications of the current situation to maintain situation awareness.

MMI-Interaktiv, Nr. 7, Juni �04, ISSN 1439-7854, Schoppek & Boehm-Davis 52

We assume three basic types of operators, which are part of every step. (The separa-
tion of steps and operators allows the occurrence of the same operator in multiple
steps.) Internal operators perform memory operations, comparisons, or mental calcu-
lations; they are represented as single production rule. External operators perform
actions such as pressing buttons or dialing values. Perceptual operators provide rep-
resentations of the environment such as current values read from displays or ATC
clearances.

Level 3 represents the interface between central cognition and peripheral systems.
Since ACT-Fly does not simulate perceptual or motor processes in detail, input-
output operations are modeled on an abstract level. When the model requests infor-
mation from the environment, a specialized chunk is pushed on Level 3, completed
with the requested information (through the TCP/IP-socket connection with the flight
simulator), and the results are transferred to the goal chunk of Level 2. Similar steps
are performed for motor commands. After being cleared from the goal stack, the I-O-
chunks remain as episodic traces in memory.

Our solution of a goal stack with three levels has similarities with the �memory for
goals� approach by Altmann & Trafton (2002) (which in the meantime has become a
standard modeling technique in ACT-R). In particular, goal processing at Level 2
complies with Altmann & Trafton�s approach. However, assuming separate levels
for problem solving, procedural processing, and perceptual-motor processing made
modeling of our complex task much easier. We believe it reasonable to assume that
goals corresponding to different levels do not interfere with each other when a pend-
ing goal is retrieved from memory. Moreover, the goals of Level 3 never stay there
for longer short periods of time, making it plausible that the pending goal on Level 2
is virtually always retrieved correctly.

MMI-Interaktiv, Nr. 7, Juni �04, ISSN 1439-7854, Schoppek & Boehm-Davis 53

3. ACT-Fly�s predictions and performance

use VNAV

use FLCH
(speed/green arc)

calculate s = ∆h/∆d

get distance to
waypoint: ∆d

update CDU

s>250?

calculate ∆h

+

_

enter MCP-altitude

∆ h

BA

∆ d

Descent clearance specifying
altitude and waypoint

Figure 2: Flow chart of the central method of ACT-Fly that decides what mode to use for a
given descent leg. The boxes represent goals for which ACT-Fly has appropriate methods.

Central to the behavior of the ACT-Fly model is a method that decides what mode of
the flight management system to use for a given leg. A flow chart of this method is
depicted in Figure 2. This was an area where it became clear that existing models in
current architectures could not provide guidance about how to represent this task. For
our model, we interviewed several subject matter experts and discovered several al-
ternative methods that could have been used. From these reports, we abstracted the
method shown in Figure 1, which is more explicit and simpler than any individual
model described by an expert. ATC-clearances and situations in which a waypoint
gets close can trigger execution of this method. Our goal was to determine how well
the use of this single abstracted model could account for typical pilot behavior.

Performance of the ACT-Fly model was assessed by flying informal as well as stan-
dardized simulated scenarios. In these scenarios, the model ran on one computer, the
flight simulator on a second computer. Most of the communication between the pro-
grams was handled through an TCP/IP socket connection. Only a few values from
the flight simulator had to be entered manually on request of the model; ATC clear-
ances were entered manually, too. Most scenarios started with the simulated aircraft
being close to the �top of descent point� calculated by the flight management system.
ACT-Fly recognizes the situation on its own initiative. Time synchronization was
accomplished by letting ACT-Fly, which usually runs faster than the flight simulator,
wait for the simulator when its simulated time was more than five seconds ahead of
real time.

Figure 3 shows the results of simulations of two descent scenarios. For each scenario,
we ran six simulations. As can be seen from the mean deviations around each data
point, there was little variability in model performance. Generally, the model flew
the desired paths precisely. In the scenario without ACT-clearances, the model se-

MMI-Interaktiv, Nr. 7, Juni �04, ISSN 1439-7854, Schoppek & Boehm-Davis 54

lected the VNAV mode for most of the legs, except for the leg between BOLDR and
MENLO, where FLCH was used. In the second scenario, where a clearance was is-
sued after the top-of-descent point (T/D) had been passed (making VNAV an inap-
propriate mode choice), the model selected the semiautomatic FLCH mode right af-
ter the clearance.

0
5000

10000
15000
20000
25000
30000
35000
40000

Flight according to plan

0
5000

10000
15000
20000
25000
30000
35000
40000

0 20 40 60 80 100 120 140

T/D Cruise BSR CARME ANJEE BOLDRSKUNK MENLO

route (nm)

Planned path Mean altitude of simulated flights with mean deviations

waypoints

Flight with ATC-clearance
at short notice (after T/D)

altitude
(feet)

Figure 3: Flight paths of simulated flights in two scenarios (six simulations in each sce-
nario). The upper panel shows data from a scenario without ATC clearances, the lower
panel data from a scenario with the clearance �Cross ANJEE at 16000�.

In all twelve simulations, each consisting of approximately 16 simulated minutes and
1300 production firing cycles, four errors of omission occurred. One of these caused
the large deviation at waypoint MENLO visible in the lower panel of Figure 2, be-
cause the model could not recover from the error and failed to update the altitudes in
the mode control panel. Although the single complete failure to recover out of four
errors of omission is too low for a stable estimation, we think that this proportion is
much worse than what is found in humans (Reason, 1990). Observations from our
informal testing support this view.

The model committed a number of other errors; these impaired performance more
gradually. For example, there were three cases where the model failed to resume a
deferred action (intention). In general, error recovery was best when the method in
which the error occurred was directly triggered by the identification of a relatively
stable situation (initiated by Level 1 of the control structure). Error recovery was
worse when the affected method was triggered by another method (initiated by Level
2), and when it was triggered by a transient situation.

MMI-Interaktiv, Nr. 7, Juni �04, ISSN 1439-7854, Schoppek & Boehm-Davis 55

To compare performance of real pilots with the model, we conducted a study with
five commercial pilots, certified to fly the Boeing 777 aircraft (which has a flight
management system very similar to the Boeing 747-400). Four of the pilots served as
first officers on the 777; one served as a captain. The participants flew two scenarios
with the aforementioned PS1 flight simulator. Flight performance, prompted recall of
flight parameters, and eye-tracking data were recorded. (For results of the eye-
tracking aspect of this work, see Diez, Boehm-Davis, Holt, Pinney, Hansberger, &
Schoppek, 2001). As the results in Table 2 indicate, the pilots� performance was un-
expectedly poor. In the first scenario, all pilots violated the altitude restriction of
11000 feet at waypoint PANZE. The altitude restriction was much better met in the
second scenario. However, four of five pilots initiated an early descent, which was
unnecessary in Scenario 2 (and increases fuel consumption). The frequent mode
changes commanded by the pilots are also remarkable.

 Scenario 1: Sea Isle approach Scenario 2: Big Sur approach

 early
descent?

mode
(sequence)

crosses
PANZE at

early
descent?

mode
(sequence)

crosses
ANJEE at

Good solution yes V/S or FLCH 11,000 no VNAV 16,000

Subject 1 no V/S 19,500 yes V/S, VNAV
V/S, VNAV 16,000

Subject 2 yes VNAV 16,200 yes VNAV 16,000

Subject 3 yes FLCH, VNAV,
FLCH, VNAV 13,000 yes

VNAV, FLCH,
V/S, VNAV,
FLCH, HOLD

16,200

Subject 4 no VNAV 15,700 no VNAV 16,000

Subject 5 yes V/S, FLCH,
VNAV, FLCH 11,000 yes VNAV 16,000

Although this poor performance is troubling, we believe that it does not closely re-
flect the pilots� line performance and should be attributed, at least in part, to the set-
ting of our study: The pilots reported that the simulation functioned reasonably well
in simulating the responses of a real aircraft; however, there were two important dif-
ferences between the simulated situation and a real cockpit. Our participants had to
accomplish the flying task alone, whereas in reality, there is a distinct division of
labor between two crew members. Second, the interface required keyboard and
mouse entries rather than the use of knobs and dials. The combination of these fac-
tors likely influenced pilot performance.

4. Discussion

The process of designing the ACT-Fly model revealed a number of phenomena that
appear to be common, or even typical for complex tasks, but for which there are no
standard solutions in extant ACT-R models. We developed ad hoc solutions with no
claim that they represent theories. For all these phenomena, theoretical solutions that
account for a broad range of documented effects would advance both the efficiency
of modeling complex tasks, and the scope of the ACT-R framework.

Deferring actions: In dynamic systems, effects of actions can unfold slowly. In these
cases, checking the success of an action must be deferred, while other things are be-
ing done. For example, in VNAV mode, after entering a new reference value for alti-

MMI-Interaktiv, Nr. 7, Juni �04, ISSN 1439-7854, Schoppek & Boehm-Davis 56

tude, the pilot must wait until the next waypoint has been passed before deciding
how to continue. The problem for modeling is how the deferred intention is remem-
bered on time. To simulate intention memory, we used a mechanism that inhibits the
chunks representing the deferred actions for a certain time. After each completion of
a method, the model tried to retrieve deferred goals from memory, which fails as
long as these are inhibited. After the inhibition has terminated, there is a chance to
retrieve the chunks, but only for a limited time, after which they may be forgotten.

Expectations: One undesired type of event that can lead to errors is �automation sur-
prise� (Sarter & Woods, 1995). It occurs when the behavior of the automation does
not match the pilots� expectation (e.g. when the aircraft suddenly levels off when the
pilots expect it to continue the descent). We included two mechanisms to model ex-
pectations. One involves the retrieval of a chunk that represents a situation-action-
situation sequence. The other models expectations through production rules that re-
spond to outcomes not associated with specific behavior. The first mechanism re-
quires a controlled action demanding central resources; the second mechanism does
not really form expectations to be compared with the actual outcomes. Rather, it re-
sponds to unfamiliar situations. We think that both solutions do not sufficiently re-
flect the character of the process of forming expectations as an autonomous back-
ground mechanism, but since input and output can be connected exclusively through
the central production selection process in ACT-R, such mechanisms cannot be im-
plemented in principle. This strong claim of the ACT-R architecture might be recon-
sidered in future developments.

Estimation of time: We identified several processes that rely on estimation of time:
the resumption of intentions, the periodic repetition of monitoring behaviors, and the
decision to try a different method when one method fails after some repeated applica-
tions. We simulated time estimation simply by using the numerical output of the time
function provided by ACT-R. Phenomena like the dependence of subjective time on
workload could not be produced with this solution (Leuchter & Urbas, 2003). If one
assumes internal timers whose signals are processed depending on, e.g., workload,
there is again the question if this is done by the central production selection mecha-
nism or by some other background processes.

Judging the results of our modeling effort, we can state that some of the objectives
have been met, some have not. Following is a list of strengths of the model.

1. Errors of omission and errors of commission could be produced. The underly-
ing dynamic is such that errors of omission are more likely under high work-
ing memory load (Schoppek, 2000).

2. We showed that a large fraction of (even flexible) behavior in the use of the
flight management system can be explained by (predefined) procedures in the
absence of declarative memory about the system.

3. The model can be used to test the effectiveness and flexibility of alternative
procedures. In our model, the ACT-Fly method we developed for deciding
what mode to use for a given descent profile proved effective in a range of
scenarios. It would have been easy to develop and test alternative methods for
making this decision by inserting a new method in its place.

4. The separation of general and domain specific parts allows for improvements
in the general part with few changes to the specific part of the model. Further,

MMI-Interaktiv, Nr. 7, Juni �04, ISSN 1439-7854, Schoppek & Boehm-Davis 57

the procedural aspects of new tasks can be modeled quickly without needing
to work at the general part.

5. We discovered mechanisms common for supervisory control tasks that are in
principle difficult to implement in ACT-R (see above).

On the other hand, the model has a number of shortcomings:

1. Once the model has produced an error of omission (or commission), it is �
unlike humans � not good at recovering from the error. In some simulations,
the whole subsequent behavior of the model was disturbed by one error.

2. We did not succeed in modeling continuous mode awareness and automation
surprise. The first is due to the strictly frame-oriented structure of the goal
chunk in ACT-R (which corresponds largely to working memory in other
frameworks). Once a piece of information is stored in one of the slots of the
goal chunk, it can reliably be retrieved as long as the goal is active, or unless
the slot is changed deliberately. The alternative of storing the information
about the current mode in declarative memory rather than in the goal chunk
does not produce the desired effects either, because in ACT-R, declarative
memory can only be accessed in a controlled manner returning �conscious�
feedback about the result of the retrieval attempt. Thus, we did not find a
satisfactory solution for modeling inadvertent forgetting of mode information.

3. The model generally has poor situation awareness, supposedly because it has
too little general knowledge about flying. We believe that real pilots classify
(and identify) situations much more by similarity to known situations than by
rules, as ACT-Fly does. It is possible that the procedure we developed for the
descent decision is tailored too much to the support of decision-making and
too little to the support of situation awareness. To test procedures more realis-
tically, their implications for decisions and situation awareness should be
judged.

4. We were able to build this model over a period of 10 months. This is a fairly
long interval. However, it is shorter than what likely would have been re-
quired had we not been working with an existing cognitive architecture.

Most aspects of the task for which ACT-R did not provide enough constraints fol-
lowed from the task's dynamic and the requirement to interleave subtasks during long
time intervals. Although we were able to identify potential solutions to the identified
problems, they represent only crude approximations to long-term theories that could
be reused. Nonetheless, they can be regarded as hints how the scope of ACT-R could
be extended to reasoning and action in more complex and dynamic environments.

5. Acknowledgments

This research has been supported by grants NAG 2-1289 from the NASA and 99-G-
010 from the FAA. We thank Melanie Diez for her help in developing the scenarios
for the simulator and for collecting empirical data from pilots.

MMI-Interaktiv, Nr. 7, Juni �04, ISSN 1439-7854, Schoppek & Boehm-Davis 58

http://dict.leo.org/?p=14/p..&search=satisfactory

6. References

Altmann, E. M. (2000). Memory in chains: Modeling primacy and recency effects in
memory for order. Proceedings of the 22nd annual conference of the Cognitive
Science Society (pp. 31-36). Hillsdale, NJ: Erlbaum.

Altmann, E. M. & Trafton, J. G. (2002). Memory for goals: An activation-based mo-
del. Cognitive Science, 26, 39-83.

Anderson J.R. (1982). Acquisition of cognitive skill. Psychological Review, 89, 369 -
406.

Anderson, J.R., & Lebiere, C. (1998). Atomic components of thought. Mahwah, NJ:
Erlbaum.

Anderson, J.R., Bothell, D., Lebiere, C. & Matessa, M. (1998). An integrated theory
of list memory. Journal of Memory and Language, 38, 341 -380.

Anderson, J.R. & Reder, L.M. (1999). The fan effect: New Results and new theories.
Journal of Experimental Psychology: General, 128, 186 -197.

Byrne M.D., & Bovair S. (1997). A working memory model of a common procedural
error. Cognitive Science, 21, 31 - 61.

Card, S.K., Moran, T.P. & Newell, A. (1983). The Psychology of Human - Computer
Interaction. Hillsdale, NJ: Erlbaum.

Diez, M., Boehm-Davis, D.A., Holt, R.W., Pinney, M.E., Hansberger, J.T., Schop-
pek, W. (2001). Tracking pilot interactions with flight management systems
through eye movements. Paper presented at the 11th International Symposium on
Aviation Psychology, Columbus, Ohio.
[http://hfac.gmu.edu/~mdiez/MelPubs/Tracking%20pilot%20interactions.PDF]

Holt, R. W., Hansberger, J., Chong, R., & Boehm-Davis, D. A. (2002). Modeling
aviation crew interaction using a cognitive architecture. In Proceedings of the
24th Annual Meeting of the Cognitive Science Society, Fairfax, VA.

Kieras, D. (1997). A guide to GOMS model usability evaluation using NGOMSL. In
M. Helander, T. K. Landauer, & P. Prabhu (Eds.), Handbook of Human-
Computer Interaction, (Second ed., pp. 733-766). New York: Elsevier.

Lebiere C., & Wallach D. (2001). Sequence learning in the ACT-R cognitive archi-
tecture: Empirical analysis of a hybrid model. In C. L. Giles R. Sun (Eds.), Se-
quence Learning: Paradigms, Algorithms, and Applications Lecture Notes in
Computer Science (pp. 188 - 212). Heidelberg: Springer.

Lee F.J., & Anderson J.R. (2001). Does learning of a complex task have to be com-
plex? A study in learning decomposition. Cognitive Psychology, 42, 267 - 316.

Leuchter, S. & Urbas, L. (2003). Modeling dynamics and timing for operating hu-
man-machine systems. In F. Detje, D. Dörner, & H. Schaub (Eds.), The Logic
of Cognitive Systems. Proceedings of the Fifth International Conference on
Cognitive Modeling (pp. 279-280). Bamberg: Universitäts-Verlag.

MMI-Interaktiv, Nr. 7, Juni �04, ISSN 1439-7854, Schoppek & Boehm-Davis 59

Rasmussen, J. (1986). Information processing and human-machine interaction. Am-
sterdam: North Holland.

Reason, J. (1990). Human error. Cambridge: University Press.

Rosenbloom, P. S., Laird, J. E., & Newell, A. (Eds.). (1992). The SOAR Papers: Re-
search on Integrated Intelligence. Cambridge, MA: MIT Press.

Salvucci, D. D. (2001). Predicting the effects of in-car interface use on driver per-
formance: An integrated model approach. International Journal of Human-
Computer Studies, 55, 85 - 107.

Sarter N.B., & Woods D.D. (1992). Pilot interaction with cockpit automation I: Op-
erational experiences with the flight management system. International Jour-
nal of Aviation Psychology, 2, 1 - 28.

Sarter, N. B. & Woods, D. D. (1995). How in the world did we ever get into that
mode? Mode error and awareness in supervisory control. Human Factors, 37, 5
-19.

Schoppek, W. (2000). Learning and performance of sequential action under different
workload conditions: An ACT-R model. In N. Taatgen; J. Aasman (eds.), Pro-
ceedings of the Third International Conference on Cognitive Modeling (pp.
295 � 296). Veenendaal: Universal Press.

Schoppek W. (2002). Examples, rules, and strategies in the control of dynamic sys-
tems. Cognitive Science Quarterly, 2, 63 - 92.

Taatgen N.A. (1999). A model of learning task-specific knowledge for a new task.
Proceedings of the 21th annual conference of the cognitive science society
(pp. 730 - 735). Mahwah, NJ: Erlbaum.

Taatgen N.A., & Lee F.J. (2003). Production compilation: A simple mechanism to
model complex skill acquisition. Human Factors, 45, 61 - 76.

MMI-Interaktiv, Nr. 7, Juni �04, ISSN 1439-7854, Schoppek & Boehm-Davis 60

	Introduction
	Requirements for modeling complex real world tasks
	
	
	Fixed symbolic rule
	Single step

	Characteristics of our modeled task

	ACT-Fly model
	ACT-Fly’s predictions and performance
	Discussion
	Acknowledgments
	References

